/[smecontribs]/rpms/openssl3/contribs10/0102-CVE-2022-4304-RSA-time-oracle.patch
ViewVC logotype

Annotation of /rpms/openssl3/contribs10/0102-CVE-2022-4304-RSA-time-oracle.patch

Parent Directory Parent Directory | Revision Log Revision Log | View Revision Graph Revision Graph


Revision 1.1 - (hide annotations) (download)
Wed Jan 31 17:24:50 2024 UTC (9 months, 3 weeks ago) by jpp
Branch: MAIN
CVS Tags: openssl3-3_0_7-5_el7_sme_1, HEAD
Initial import

1 jpp 1.1 From 8e257b86e5812c6e1cfa9e8e5f5660ac7bed899d Mon Sep 17 00:00:00 2001
2     From: Dmitry Belyavskiy <beldmit@gmail.com>
3     Date: Fri, 20 Jan 2023 15:03:40 +0000
4     Subject: [PATCH 03/18] Fix Timing Oracle in RSA decryption
5    
6     A timing based side channel exists in the OpenSSL RSA Decryption
7     implementation which could be sufficient to recover a plaintext across
8     a network in a Bleichenbacher style attack. To achieve a successful
9     decryption an attacker would have to be able to send a very large number
10     of trial messages for decryption. The vulnerability affects all RSA
11     padding modes: PKCS#1 v1.5, RSA-OEAP and RSASVE.
12    
13     Patch written by Dmitry Belyavsky and Hubert Kario
14    
15     CVE-2022-4304
16    
17     Reviewed-by: Matt Caswell <matt@openssl.org>
18     Reviewed-by: Tomas Mraz <tomas@openssl.org>
19     ---
20     crypto/bn/bn_blind.c | 14 -
21     crypto/bn/bn_local.h | 14 +
22     crypto/bn/build.info | 2 +-
23     crypto/bn/rsa_sup_mul.c | 604 ++++++++++++++++++++++++++++++++++++++++
24     crypto/rsa/rsa_ossl.c | 19 +-
25     include/crypto/bn.h | 6 +
26     6 files changed, 638 insertions(+), 21 deletions(-)
27     create mode 100644 crypto/bn/rsa_sup_mul.c
28    
29     diff --git a/crypto/bn/bn_blind.c b/crypto/bn/bn_blind.c
30     index 72457b34cf..6061ebb4c0 100644
31     --- a/crypto/bn/bn_blind.c
32     +++ b/crypto/bn/bn_blind.c
33     @@ -13,20 +13,6 @@
34    
35     #define BN_BLINDING_COUNTER 32
36    
37     -struct bn_blinding_st {
38     - BIGNUM *A;
39     - BIGNUM *Ai;
40     - BIGNUM *e;
41     - BIGNUM *mod; /* just a reference */
42     - CRYPTO_THREAD_ID tid;
43     - int counter;
44     - unsigned long flags;
45     - BN_MONT_CTX *m_ctx;
46     - int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
47     - const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
48     - CRYPTO_RWLOCK *lock;
49     -};
50     -
51     BN_BLINDING *BN_BLINDING_new(const BIGNUM *A, const BIGNUM *Ai, BIGNUM *mod)
52     {
53     BN_BLINDING *ret = NULL;
54     diff --git a/crypto/bn/bn_local.h b/crypto/bn/bn_local.h
55     index c9a7ecf298..8c428f919d 100644
56     --- a/crypto/bn/bn_local.h
57     +++ b/crypto/bn/bn_local.h
58     @@ -290,6 +290,20 @@ struct bn_gencb_st {
59     } cb;
60     };
61    
62     +struct bn_blinding_st {
63     + BIGNUM *A;
64     + BIGNUM *Ai;
65     + BIGNUM *e;
66     + BIGNUM *mod; /* just a reference */
67     + CRYPTO_THREAD_ID tid;
68     + int counter;
69     + unsigned long flags;
70     + BN_MONT_CTX *m_ctx;
71     + int (*bn_mod_exp) (BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
72     + const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *m_ctx);
73     + CRYPTO_RWLOCK *lock;
74     +};
75     +
76     /*-
77     * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions
78     *
79     diff --git a/crypto/bn/build.info b/crypto/bn/build.info
80     index c4ba51b265..f4ff619239 100644
81     --- a/crypto/bn/build.info
82     +++ b/crypto/bn/build.info
83     @@ -105,7 +105,7 @@ $COMMON=bn_add.c bn_div.c bn_exp.c bn_lib.c bn_ctx.c bn_mul.c \
84     bn_mod.c bn_conv.c bn_rand.c bn_shift.c bn_word.c bn_blind.c \
85     bn_kron.c bn_sqrt.c bn_gcd.c bn_prime.c bn_sqr.c \
86     bn_recp.c bn_mont.c bn_mpi.c bn_exp2.c bn_gf2m.c bn_nist.c \
87     - bn_intern.c bn_dh.c bn_rsa_fips186_4.c bn_const.c
88     + bn_intern.c bn_dh.c bn_rsa_fips186_4.c bn_const.c rsa_sup_mul.c
89     SOURCE[../../libcrypto]=$COMMON $BNASM bn_print.c bn_err.c bn_srp.c
90     DEFINE[../../libcrypto]=$BNDEF
91     IF[{- !$disabled{'deprecated-0.9.8'} -}]
92     diff --git a/crypto/bn/rsa_sup_mul.c b/crypto/bn/rsa_sup_mul.c
93     new file mode 100644
94     index 0000000000..0e0d02e194
95     --- /dev/null
96     +++ b/crypto/bn/rsa_sup_mul.c
97     @@ -0,0 +1,604 @@
98     +#include <openssl/e_os2.h>
99     +#include <stddef.h>
100     +#include <sys/types.h>
101     +#include <string.h>
102     +#include <openssl/bn.h>
103     +#include <openssl/err.h>
104     +#include <openssl/rsaerr.h>
105     +#include "internal/endian.h"
106     +#include "internal/numbers.h"
107     +#include "internal/constant_time.h"
108     +#include "bn_local.h"
109     +
110     +# if BN_BYTES == 8
111     +typedef uint64_t limb_t;
112     +# if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__ == 16
113     +typedef uint128_t limb2_t;
114     +# define HAVE_LIMB2_T
115     +# endif
116     +# define LIMB_BIT_SIZE 64
117     +# define LIMB_BYTE_SIZE 8
118     +# elif BN_BYTES == 4
119     +typedef uint32_t limb_t;
120     +typedef uint64_t limb2_t;
121     +# define LIMB_BIT_SIZE 32
122     +# define LIMB_BYTE_SIZE 4
123     +# define HAVE_LIMB2_T
124     +# else
125     +# error "Not supported"
126     +# endif
127     +
128     +/*
129     + * For multiplication we're using schoolbook multiplication,
130     + * so if we have two numbers, each with 6 "digits" (words)
131     + * the multiplication is calculated as follows:
132     + * A B C D E F
133     + * x I J K L M N
134     + * --------------
135     + * N*F
136     + * N*E
137     + * N*D
138     + * N*C
139     + * N*B
140     + * N*A
141     + * M*F
142     + * M*E
143     + * M*D
144     + * M*C
145     + * M*B
146     + * M*A
147     + * L*F
148     + * L*E
149     + * L*D
150     + * L*C
151     + * L*B
152     + * L*A
153     + * K*F
154     + * K*E
155     + * K*D
156     + * K*C
157     + * K*B
158     + * K*A
159     + * J*F
160     + * J*E
161     + * J*D
162     + * J*C
163     + * J*B
164     + * J*A
165     + * I*F
166     + * I*E
167     + * I*D
168     + * I*C
169     + * I*B
170     + * + I*A
171     + * ==========================
172     + * N*B N*D N*F
173     + * + N*A N*C N*E
174     + * + M*B M*D M*F
175     + * + M*A M*C M*E
176     + * + L*B L*D L*F
177     + * + L*A L*C L*E
178     + * + K*B K*D K*F
179     + * + K*A K*C K*E
180     + * + J*B J*D J*F
181     + * + J*A J*C J*E
182     + * + I*B I*D I*F
183     + * + I*A I*C I*E
184     + *
185     + * 1+1 1+3 1+5
186     + * 1+0 1+2 1+4
187     + * 0+1 0+3 0+5
188     + * 0+0 0+2 0+4
189     + *
190     + * 0 1 2 3 4 5 6
191     + * which requires n^2 multiplications and 2n full length additions
192     + * as we can keep every other result of limb multiplication in two separate
193     + * limbs
194     + */
195     +
196     +#if defined HAVE_LIMB2_T
197     +static ossl_inline void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b)
198     +{
199     + limb2_t t;
200     + /*
201     + * this is idiomatic code to tell compiler to use the native mul
202     + * those three lines will actually compile to single instruction
203     + */
204     +
205     + t = (limb2_t)a * b;
206     + *hi = t >> LIMB_BIT_SIZE;
207     + *lo = (limb_t)t;
208     +}
209     +#elif (BN_BYTES == 8) && (defined _MSC_VER)
210     +/* https://learn.microsoft.com/en-us/cpp/intrinsics/umul128?view=msvc-170 */
211     +#pragma intrinsic(_umul128)
212     +static ossl_inline void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b)
213     +{
214     + *lo = _umul128(a, b, hi);
215     +}
216     +#else
217     +/*
218     + * if the compiler doesn't have either a 128bit data type nor a "return
219     + * high 64 bits of multiplication"
220     + */
221     +static ossl_inline void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b)
222     +{
223     + limb_t a_low = (limb_t)(uint32_t)a;
224     + limb_t a_hi = a >> 32;
225     + limb_t b_low = (limb_t)(uint32_t)b;
226     + limb_t b_hi = b >> 32;
227     +
228     + limb_t p0 = a_low * b_low;
229     + limb_t p1 = a_low * b_hi;
230     + limb_t p2 = a_hi * b_low;
231     + limb_t p3 = a_hi * b_hi;
232     +
233     + uint32_t cy = (uint32_t)(((p0 >> 32) + (uint32_t)p1 + (uint32_t)p2) >> 32);
234     +
235     + *lo = p0 + (p1 << 32) + (p2 << 32);
236     + *hi = p3 + (p1 >> 32) + (p2 >> 32) + cy;
237     +}
238     +#endif
239     +
240     +/* add two limbs with carry in, return carry out */
241     +static ossl_inline limb_t _add_limb(limb_t *ret, limb_t a, limb_t b, limb_t carry)
242     +{
243     + limb_t carry1, carry2, t;
244     + /*
245     + * `c = a + b; if (c < a)` is idiomatic code that makes compilers
246     + * use add with carry on assembly level
247     + */
248     +
249     + *ret = a + carry;
250     + if (*ret < a)
251     + carry1 = 1;
252     + else
253     + carry1 = 0;
254     +
255     + t = *ret;
256     + *ret = t + b;
257     + if (*ret < t)
258     + carry2 = 1;
259     + else
260     + carry2 = 0;
261     +
262     + return carry1 + carry2;
263     +}
264     +
265     +/*
266     + * add two numbers of the same size, return overflow
267     + *
268     + * add a to b, place result in ret; all arrays need to be n limbs long
269     + * return overflow from addition (0 or 1)
270     + */
271     +static ossl_inline limb_t add(limb_t *ret, limb_t *a, limb_t *b, size_t n)
272     +{
273     + limb_t c = 0;
274     + ossl_ssize_t i;
275     +
276     + for(i = n - 1; i > -1; i--)
277     + c = _add_limb(&ret[i], a[i], b[i], c);
278     +
279     + return c;
280     +}
281     +
282     +/*
283     + * return number of limbs necessary for temporary values
284     + * when multiplying numbers n limbs large
285     + */
286     +static ossl_inline size_t mul_limb_numb(size_t n)
287     +{
288     + return 2 * n * 2;
289     +}
290     +
291     +/*
292     + * multiply two numbers of the same size
293     + *
294     + * multiply a by b, place result in ret; a and b need to be n limbs long
295     + * ret needs to be 2*n limbs long, tmp needs to be mul_limb_numb(n) limbs
296     + * long
297     + */
298     +static void limb_mul(limb_t *ret, limb_t *a, limb_t *b, size_t n, limb_t *tmp)
299     +{
300     + limb_t *r_odd, *r_even;
301     + size_t i, j, k;
302     +
303     + r_odd = tmp;
304     + r_even = &tmp[2 * n];
305     +
306     + memset(ret, 0, 2 * n * sizeof(limb_t));
307     +
308     + for (i = 0; i < n; i++) {
309     + for (k = 0; k < i + n + 1; k++) {
310     + r_even[k] = 0;
311     + r_odd[k] = 0;
312     + }
313     + for (j = 0; j < n; j++) {
314     + /*
315     + * place results from even and odd limbs in separate arrays so that
316     + * we don't have to calculate overflow every time we get individual
317     + * limb multiplication result
318     + */
319     + if (j % 2 == 0)
320     + _mul_limb(&r_even[i + j], &r_even[i + j + 1], a[i], b[j]);
321     + else
322     + _mul_limb(&r_odd[i + j], &r_odd[i + j + 1], a[i], b[j]);
323     + }
324     + /*
325     + * skip the least significant limbs when adding multiples of
326     + * more significant limbs (they're zero anyway)
327     + */
328     + add(ret, ret, r_even, n + i + 1);
329     + add(ret, ret, r_odd, n + i + 1);
330     + }
331     +}
332     +
333     +/* modifies the value in place by performing a right shift by one bit */
334     +static ossl_inline void rshift1(limb_t *val, size_t n)
335     +{
336     + limb_t shift_in = 0, shift_out = 0;
337     + size_t i;
338     +
339     + for (i = 0; i < n; i++) {
340     + shift_out = val[i] & 1;
341     + val[i] = shift_in << (LIMB_BIT_SIZE - 1) | (val[i] >> 1);
342     + shift_in = shift_out;
343     + }
344     +}
345     +
346     +/* extend the LSB of flag to all bits of limb */
347     +static ossl_inline limb_t mk_mask(limb_t flag)
348     +{
349     + flag |= flag << 1;
350     + flag |= flag << 2;
351     + flag |= flag << 4;
352     + flag |= flag << 8;
353     + flag |= flag << 16;
354     +#if (LIMB_BYTE_SIZE == 8)
355     + flag |= flag << 32;
356     +#endif
357     + return flag;
358     +}
359     +
360     +/*
361     + * copy from either a or b to ret based on flag
362     + * when flag == 0, then copies from b
363     + * when flag == 1, then copies from a
364     + */
365     +static ossl_inline void cselect(limb_t flag, limb_t *ret, limb_t *a, limb_t *b, size_t n)
366     +{
367     + /*
368     + * would be more efficient with non volatile mask, but then gcc
369     + * generates code with jumps
370     + */
371     + volatile limb_t mask;
372     + size_t i;
373     +
374     + mask = mk_mask(flag);
375     + for (i = 0; i < n; i++) {
376     +#if (LIMB_BYTE_SIZE == 8)
377     + ret[i] = constant_time_select_64(mask, a[i], b[i]);
378     +#else
379     + ret[i] = constant_time_select_32(mask, a[i], b[i]);
380     +#endif
381     + }
382     +}
383     +
384     +static limb_t _sub_limb(limb_t *ret, limb_t a, limb_t b, limb_t borrow)
385     +{
386     + limb_t borrow1, borrow2, t;
387     + /*
388     + * while it doesn't look constant-time, this is idiomatic code
389     + * to tell compilers to use the carry bit from subtraction
390     + */
391     +
392     + *ret = a - borrow;
393     + if (*ret > a)
394     + borrow1 = 1;
395     + else
396     + borrow1 = 0;
397     +
398     + t = *ret;
399     + *ret = t - b;
400     + if (*ret > t)
401     + borrow2 = 1;
402     + else
403     + borrow2 = 0;
404     +
405     + return borrow1 + borrow2;
406     +}
407     +
408     +/*
409     + * place the result of a - b into ret, return the borrow bit.
410     + * All arrays need to be n limbs long
411     + */
412     +static limb_t sub(limb_t *ret, limb_t *a, limb_t *b, size_t n)
413     +{
414     + limb_t borrow = 0;
415     + ossl_ssize_t i;
416     +
417     + for (i = n - 1; i > -1; i--)
418     + borrow = _sub_limb(&ret[i], a[i], b[i], borrow);
419     +
420     + return borrow;
421     +}
422     +
423     +/* return the number of limbs necessary to allocate for the mod() tmp operand */
424     +static ossl_inline size_t mod_limb_numb(size_t anum, size_t modnum)
425     +{
426     + return (anum + modnum) * 3;
427     +}
428     +
429     +/*
430     + * calculate a % mod, place the result in ret
431     + * size of a is defined by anum, size of ret and mod is modnum,
432     + * size of tmp is returned by mod_limb_numb()
433     + */
434     +static void mod(limb_t *ret, limb_t *a, size_t anum, limb_t *mod,
435     + size_t modnum, limb_t *tmp)
436     +{
437     + limb_t *atmp, *modtmp, *rettmp;
438     + limb_t res;
439     + size_t i;
440     +
441     + memset(tmp, 0, mod_limb_numb(anum, modnum) * LIMB_BYTE_SIZE);
442     +
443     + atmp = tmp;
444     + modtmp = &tmp[anum + modnum];
445     + rettmp = &tmp[(anum + modnum) * 2];
446     +
447     + for (i = modnum; i <modnum + anum; i++)
448     + atmp[i] = a[i-modnum];
449     +
450     + for (i = 0; i < modnum; i++)
451     + modtmp[i] = mod[i];
452     +
453     + for (i = 0; i < anum * LIMB_BIT_SIZE; i++) {
454     + rshift1(modtmp, anum + modnum);
455     + res = sub(rettmp, atmp, modtmp, anum+modnum);
456     + cselect(res, atmp, atmp, rettmp, anum+modnum);
457     + }
458     +
459     + memcpy(ret, &atmp[anum], sizeof(limb_t) * modnum);
460     +}
461     +
462     +/* necessary size of tmp for a _mul_add_limb() call with provided anum */
463     +static ossl_inline size_t _mul_add_limb_numb(size_t anum)
464     +{
465     + return 2 * (anum + 1);
466     +}
467     +
468     +/* multiply a by m, add to ret, return carry */
469     +static limb_t _mul_add_limb(limb_t *ret, limb_t *a, size_t anum,
470     + limb_t m, limb_t *tmp)
471     +{
472     + limb_t carry = 0;
473     + limb_t *r_odd, *r_even;
474     + size_t i;
475     +
476     + memset(tmp, 0, sizeof(limb_t) * (anum + 1) * 2);
477     +
478     + r_odd = tmp;
479     + r_even = &tmp[anum + 1];
480     +
481     + for (i = 0; i < anum; i++) {
482     + /*
483     + * place the results from even and odd limbs in separate arrays
484     + * so that we have to worry about carry just once
485     + */
486     + if (i % 2 == 0)
487     + _mul_limb(&r_even[i], &r_even[i + 1], a[i], m);
488     + else
489     + _mul_limb(&r_odd[i], &r_odd[i + 1], a[i], m);
490     + }
491     + /* assert: add() carry here will be equal zero */
492     + add(r_even, r_even, r_odd, anum + 1);
493     + /*
494     + * while here it will not overflow as the max value from multiplication
495     + * is -2 while max overflow from addition is 1, so the max value of
496     + * carry is -1 (i.e. max int)
497     + */
498     + carry = add(ret, ret, &r_even[1], anum) + r_even[0];
499     +
500     + return carry;
501     +}
502     +
503     +static ossl_inline size_t mod_montgomery_limb_numb(size_t modnum)
504     +{
505     + return modnum * 2 + _mul_add_limb_numb(modnum);
506     +}
507     +
508     +/*
509     + * calculate a % mod, place result in ret
510     + * assumes that a is in Montgomery form with the R (Montgomery modulus) being
511     + * smallest power of two big enough to fit mod and that's also a power
512     + * of the count of number of bits in limb_t (B).
513     + * For calculation, we also need n', such that mod * n' == -1 mod B.
514     + * anum must be <= 2 * modnum
515     + * ret needs to be modnum words long
516     + * tmp needs to be mod_montgomery_limb_numb(modnum) limbs long
517     + */
518     +static void mod_montgomery(limb_t *ret, limb_t *a, size_t anum, limb_t *mod,
519     + size_t modnum, limb_t ni0, limb_t *tmp)
520     +{
521     + limb_t carry, v;
522     + limb_t *res, *rp, *tmp2;
523     + ossl_ssize_t i;
524     +
525     + res = tmp;
526     + /*
527     + * for intermediate result we need an integer twice as long as modulus
528     + * but keep the input in the least significant limbs
529     + */
530     + memset(res, 0, sizeof(limb_t) * (modnum * 2));
531     + memcpy(&res[modnum * 2 - anum], a, sizeof(limb_t) * anum);
532     + rp = &res[modnum];
533     + tmp2 = &res[modnum * 2];
534     +
535     + carry = 0;
536     +
537     + /* add multiples of the modulus to the value until R divides it cleanly */
538     + for (i = modnum; i > 0; i--, rp--) {
539     + v = _mul_add_limb(rp, mod, modnum, rp[modnum-1] * ni0, tmp2);
540     + v = v + carry + rp[-1];
541     + carry |= (v != rp[-1]);
542     + carry &= (v <= rp[-1]);
543     + rp[-1] = v;
544     + }
545     +
546     + /* perform the final reduction by mod... */
547     + carry -= sub(ret, rp, mod, modnum);
548     +
549     + /* ...conditionally */
550     + cselect(carry, ret, rp, ret, modnum);
551     +}
552     +
553     +/* allocated buffer should be freed afterwards */
554     +static void BN_to_limb(const BIGNUM *bn, limb_t *buf, size_t limbs)
555     +{
556     + int i;
557     + int real_limbs = (BN_num_bytes(bn) + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE;
558     + limb_t *ptr = buf + (limbs - real_limbs);
559     +
560     + for (i = 0; i < real_limbs; i++)
561     + ptr[i] = bn->d[real_limbs - i - 1];
562     +}
563     +
564     +#if LIMB_BYTE_SIZE == 8
565     +static ossl_inline uint64_t be64(uint64_t host)
566     +{
567     + uint64_t big = 0;
568     + DECLARE_IS_ENDIAN;
569     +
570     + if (!IS_LITTLE_ENDIAN)
571     + return host;
572     +
573     + big |= (host & 0xff00000000000000) >> 56;
574     + big |= (host & 0x00ff000000000000) >> 40;
575     + big |= (host & 0x0000ff0000000000) >> 24;
576     + big |= (host & 0x000000ff00000000) >> 8;
577     + big |= (host & 0x00000000ff000000) << 8;
578     + big |= (host & 0x0000000000ff0000) << 24;
579     + big |= (host & 0x000000000000ff00) << 40;
580     + big |= (host & 0x00000000000000ff) << 56;
581     + return big;
582     +}
583     +
584     +#else
585     +/* Not all platforms have htobe32(). */
586     +static ossl_inline uint32_t be32(uint32_t host)
587     +{
588     + uint32_t big = 0;
589     + DECLARE_IS_ENDIAN;
590     +
591     + if (!IS_LITTLE_ENDIAN)
592     + return host;
593     +
594     + big |= (host & 0xff000000) >> 24;
595     + big |= (host & 0x00ff0000) >> 8;
596     + big |= (host & 0x0000ff00) << 8;
597     + big |= (host & 0x000000ff) << 24;
598     + return big;
599     +}
600     +#endif
601     +
602     +/*
603     + * We assume that intermediate, possible_arg2, blinding, and ctx are used
604     + * similar to BN_BLINDING_invert_ex() arguments.
605     + * to_mod is RSA modulus.
606     + * buf and num is the serialization buffer and its length.
607     + *
608     + * Here we use classic/Montgomery multiplication and modulo. After the calculation finished
609     + * we serialize the new structure instead of BIGNUMs taking endianness into account.
610     + */
611     +int ossl_bn_rsa_do_unblind(const BIGNUM *intermediate,
612     + const BN_BLINDING *blinding,
613     + const BIGNUM *possible_arg2,
614     + const BIGNUM *to_mod, BN_CTX *ctx,
615     + unsigned char *buf, int num)
616     +{
617     + limb_t *l_im = NULL, *l_mul = NULL, *l_mod = NULL;
618     + limb_t *l_ret = NULL, *l_tmp = NULL, l_buf;
619     + size_t l_im_count = 0, l_mul_count = 0, l_size = 0, l_mod_count = 0;
620     + size_t l_tmp_count = 0;
621     + int ret = 0;
622     + size_t i;
623     + unsigned char *tmp;
624     + const BIGNUM *arg1 = intermediate;
625     + const BIGNUM *arg2 = (possible_arg2 == NULL) ? blinding->Ai : possible_arg2;
626     +
627     + l_im_count = (BN_num_bytes(arg1) + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE;
628     + l_mul_count = (BN_num_bytes(arg2) + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE;
629     + l_mod_count = (BN_num_bytes(to_mod) + LIMB_BYTE_SIZE - 1) / LIMB_BYTE_SIZE;
630     +
631     + l_size = l_im_count > l_mul_count ? l_im_count : l_mul_count;
632     + l_im = OPENSSL_zalloc(l_size * LIMB_BYTE_SIZE);
633     + l_mul = OPENSSL_zalloc(l_size * LIMB_BYTE_SIZE);
634     + l_mod = OPENSSL_zalloc(l_mod_count * LIMB_BYTE_SIZE);
635     +
636     + if ((l_im == NULL) || (l_mul == NULL) || (l_mod == NULL))
637     + goto err;
638     +
639     + BN_to_limb(arg1, l_im, l_size);
640     + BN_to_limb(arg2, l_mul, l_size);
641     + BN_to_limb(to_mod, l_mod, l_mod_count);
642     +
643     + l_ret = OPENSSL_malloc(2 * l_size * LIMB_BYTE_SIZE);
644     +
645     + if (blinding->m_ctx != NULL) {
646     + l_tmp_count = mul_limb_numb(l_size) > mod_montgomery_limb_numb(l_mod_count) ?
647     + mul_limb_numb(l_size) : mod_montgomery_limb_numb(l_mod_count);
648     + l_tmp = OPENSSL_malloc(l_tmp_count * LIMB_BYTE_SIZE);
649     + } else {
650     + l_tmp_count = mul_limb_numb(l_size) > mod_limb_numb(2 * l_size, l_mod_count) ?
651     + mul_limb_numb(l_size) : mod_limb_numb(2 * l_size, l_mod_count);
652     + l_tmp = OPENSSL_malloc(l_tmp_count * LIMB_BYTE_SIZE);
653     + }
654     +
655     + if ((l_ret == NULL) || (l_tmp == NULL))
656     + goto err;
657     +
658     + if (blinding->m_ctx != NULL) {
659     + limb_mul(l_ret, l_im, l_mul, l_size, l_tmp);
660     + mod_montgomery(l_ret, l_ret, 2 * l_size, l_mod, l_mod_count,
661     + blinding->m_ctx->n0[0], l_tmp);
662     + } else {
663     + limb_mul(l_ret, l_im, l_mul, l_size, l_tmp);
664     + mod(l_ret, l_ret, 2 * l_size, l_mod, l_mod_count, l_tmp);
665     + }
666     +
667     + /* modulus size in bytes can be equal to num but after limbs conversion it becomes bigger */
668     + if (num < BN_num_bytes(to_mod)) {
669     + ERR_raise(ERR_LIB_BN, ERR_R_PASSED_INVALID_ARGUMENT);
670     + goto err;
671     + }
672     +
673     + memset(buf, 0, num);
674     + tmp = buf + num - BN_num_bytes(to_mod);
675     + for (i = 0; i < l_mod_count; i++) {
676     +#if LIMB_BYTE_SIZE == 8
677     + l_buf = be64(l_ret[i]);
678     +#else
679     + l_buf = be32(l_ret[i]);
680     +#endif
681     + if (i == 0) {
682     + int delta = LIMB_BYTE_SIZE - ((l_mod_count * LIMB_BYTE_SIZE) - num);
683     +
684     + memcpy(tmp, ((char *)&l_buf) + LIMB_BYTE_SIZE - delta, delta);
685     + tmp += delta;
686     + } else {
687     + memcpy(tmp, &l_buf, LIMB_BYTE_SIZE);
688     + tmp += LIMB_BYTE_SIZE;
689     + }
690     + }
691     + ret = num;
692     +
693     + err:
694     + OPENSSL_free(l_im);
695     + OPENSSL_free(l_mul);
696     + OPENSSL_free(l_mod);
697     + OPENSSL_free(l_tmp);
698     + OPENSSL_free(l_ret);
699     +
700     + return ret;
701     +}
702     diff --git a/crypto/rsa/rsa_ossl.c b/crypto/rsa/rsa_ossl.c
703     index 381c659352..7e8b791fba 100644
704     --- a/crypto/rsa/rsa_ossl.c
705     +++ b/crypto/rsa/rsa_ossl.c
706     @@ -469,13 +469,20 @@ static int rsa_ossl_private_decrypt(int flen, const unsigned char *from,
707     BN_free(d);
708     }
709    
710     - if (blinding)
711     - if (!rsa_blinding_invert(blinding, ret, unblind, ctx))
712     + if (blinding) {
713     + /*
714     + * ossl_bn_rsa_do_unblind() combines blinding inversion and
715     + * 0-padded BN BE serialization
716     + */
717     + j = ossl_bn_rsa_do_unblind(ret, blinding, unblind, rsa->n, ctx,
718     + buf, num);
719     + if (j == 0)
720     goto err;
721     -
722     - j = BN_bn2binpad(ret, buf, num);
723     - if (j < 0)
724     - goto err;
725     + } else {
726     + j = BN_bn2binpad(ret, buf, num);
727     + if (j < 0)
728     + goto err;
729     + }
730    
731     switch (padding) {
732     case RSA_PKCS1_PADDING:
733     diff --git a/include/crypto/bn.h b/include/crypto/bn.h
734     index cf69bea848..cd45654210 100644
735     --- a/include/crypto/bn.h
736     +++ b/include/crypto/bn.h
737     @@ -114,4 +114,10 @@ OSSL_LIB_CTX *ossl_bn_get_libctx(BN_CTX *ctx);
738    
739     extern const BIGNUM ossl_bn_inv_sqrt_2;
740    
741     +int ossl_bn_rsa_do_unblind(const BIGNUM *intermediate,
742     + const BN_BLINDING *blinding,
743     + const BIGNUM *possible_arg2,
744     + const BIGNUM *to_mod, BN_CTX *ctx,
745     + unsigned char *buf, int num);
746     +
747     #endif
748     --
749     2.39.1
750    

admin@koozali.org
ViewVC Help
Powered by ViewVC 1.2.1 RSS 2.0 feed